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It is indicated that the effects of neglecting 1. the inter-atomic electrostatic field effects (M~) and 
2. the correction required to compensate the off-diagonal elements for the constant potential - Z  
implicitly included by approximating the diagonal elements as VSIE's largely cancel. To the extent 
that this cancellation holds, previous EH calculations may be rationalised in this regard. 

It has become obvious from recent work [1] that the simple Extended Hiickel 
(EH) approach to the electronic structure of transition metal complexes is in- 
adequate and that much more detailed calculations are necessary. Any success 
claimed for the EH method must be largely due to cancellation of errors and it 
would be useful if some of the sources of this cancellation could be defined. 

The diagonal matrix elements H u in the LCAO approach are of the form: 

H u = H A + M ,  (1) 

where i indicates a given atomic orbital, A denotes atomic energy terms, H A is 
the term characteristic of the free atom and M~ is the effect of the fields of the 
neighbouring atoms. The H A terms are usually estimated as valence state ioni- 
sation potentials (VSIE) I-2]. 

Early approaches [-3, 4] neglected the M~ term inherent in the diagonal matrix 
element [5, 6] and led to a prediction of high covalencies in transition metal oxide 
and halide complexes. This is at variance with experimental evidence. Cotton and 
Harris [-7] found that an arbitrary decrease in the charge dependence of the VSIE's 
resulted in improved agreement with experiment. 

In general, the effect of the M~ terms is to modify both the neutral atom value 
of the VSIE and its dependence upon charge q~, i.e. M~ can be represented by: 

M ,  = Mi (q ,  = O) + M~(qi ) . (2) 

The first term depends upon the magnitude of the overall charge on the complex 
ion and is zero in uncharged species (e.g. TIC1,). Fenske [8] has pointed out that 
in some highly-charged ions (e.g. CrC163-), the magnitude of M i ( q  i = 0) is such 
that H u can become positive and lead to computational difficulties. These can be 
overcome if a constant potential - Z is added to the Hamiltonian of the problem. 
The diagonal element then becomes (H u - Z )  and the calculation is unchanged, 
provided the off-diagonal element Hii changes by ( - Z  So), where Sij is the overlap 
integral between orbitals i and j. A strong criticism [8] of some formulae for off- 
diagonal elements is that they do not follow the above behaviour, when a constant 
potential is included. 
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The great majority of EH calculations have employed the M ulliken-Wolfsberg- 
Helmholz (MWH) approximation [3] for the off-diagonal element: 

H u = F Sil(Hii--}- Hjj)/2 (3) 

where F is a numerical parameter or some closely allied form. This was derived 
from the Mulliken approximation for potential energies only: 

Vq = S,~(V, + Vjj)/2. (4) 

Now H 0 = T 0 + Vii (5) 

where V u and T o are the potential and kinetic energy contributions respectively. 
Eq. (3) has been criticised [8] on the grounds that a multiplicative factor, F ,  has 
been used for an additive correction. 

However, Eq. (3) can be written 

H~j = So(H . + H~j) + (F - 2) So(Hii + Hjj)/2 . (6) 

Consider the case in which the Hu's are approximated by atomic VSIE's i.e. Mi = 0. 
As noted by Cusachs and Cusachs [9], VSIE's obey the virial theorem, and thus 

Ti~ = - �89 Vi~. (7) 
Also HA = Ti~ + Vi~ (8) 
and therefore 

� 8 9  A = V i i - - - T i i .  (9) 
Substituting Eq. (9) into Eq. (6) gives: 

Hij = Sij(V~ + V~)/2 + (2 - F) Sij(Ti~ + Tj~)/2 (10) 
= V~ + (2 - F) Su(T~ - Tj~)/2 (11) 

by Eq. (4). Thus, by Eq. (5), 

T u = (2 - F) Sij(T~ + Tj~)/2. (12) 

Ruedenberg [10] has shown empirically that for some orbitals 
_ A (13)  T~ - S~(Ti~ + 

is a good approximation. It is interesting to note that in most EH calculations, 
the value of F used (1.6-2.0) is such that (2 - F) is of the order of S u. 

Now, as noted above, the Hu's are much better represented by Eq. (1), than by 
the VSIE's only. The explicit inclusion of the coulombic potential Mi can have no 
effect on the kinetic energy terms. Thus Eq. (12) is unchanged. However, Eq. (4) 
becomes, still applying the virial theorem to atomic terms only, 

V o = So(V ~ + M, + V~ + Mj)/2 

= So(2H ~ + M i + 2H~ + Mj)/2. 

That is V,j = Su(H ~ + H~) + S,~(M, + M~)/2. (14) 

Now H o = V o + T u 
= S,j(H~ + H~) + Si~(M, + M~)/2 

+ (2 - F) Si~(T,~ + Tj~)/2 

= So(H ~ + H~) + Sij(Mi + M3)12 
+ ( r  - 2) Sij(H~ + H~)/2. 

That is H o = FS,fl-I  + H )/2 + Su(M + Mj)/2. (15) 
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Should a constant potential - Z  be added to the Hamiltonian, then con- 
siderations similar to those employed to obtain Eq. (14) and Eq. (15) require: 

H,j = FS,j(H A + H~)/2 + So(M , + Mj)/2 - Z  S~j. (16) 

Thus use of Eq. (15) allows a constant potential to be added to the Hamiltonian 
for any value of F. If Eq. (3) is used, this is possible only for F = 1 [8]. 

The Cusachs off-diagonal approximation I-9] is claimed to result in a distinct 
improvement in semi-empirical calculations [11]. It invokes the Mulliken 
potential energy approximation (Eq. (4)) and the Ruedenberg kinetic energy 
approximation (Eq. (13)). In the same way, this approximation becomes 

nij  = Sij(2 - IS,jl) (HA + HA)~2 + Sij(Mi + Mj)/2 - Z  S,j. (17) 

Consider the case when the M~'s are of the same order for all the basis orbitals. 
If we choose Z = (Mi + Mj)/2 ~ Mi, the diagonal element assumes a value close 
to that of the VSIE, while the off-diagonal element, Eq. (16), reduces to the classical 
MWH form. 

The Table lists values of Mi(q i = 0) and Mi(q~ ) from Eq. (2) for basis orbitals 
plausibly included in a calculation on CrC163-. They were estimated using the 
Fenske 

Table. Mi factors for CrC~ 

Atom Orbital Mi (qi = O) Mi(qi) 

Cr 3d (t2g) 148.4 49.5 x q(Cr) 
3d (%) 150.1 50.5 x q(Cr) 
4s 144.8 48.3 x q(Cr) 
4p 137.7 48.9 x q(Cr) 

CI 3s 148.4 131.6 • q(C1) 
3p~ 160.5 153.9 x q(C1) 
3px 143.0 86.3 x q(C1) 

M i = Mi(qi = O) + Mi(ql ). See text. Energies in kilokaysers (kK). 

modification of the Shullman-Sugano electrostatic approximation (see Ref. [6]). 
This appears a reasonable approximation for ionic compounds. If Z is taken as 
150 kK, there will be large cancellation of the Mi( q = 0) terms. However, the Mi(qi ) 
terms will still remain. These are essentially positive and effectively reduce the 
size of the off-diagonal element and thus the interaction of the relevant orbitals. 
This must lead to reduced covalency. 

By taking VSIE's as diagonal elements and using the classical MWH formula, 
Eq. (3), the Wolfsberg-Helmholz [3], and Ballhausen-Gray [4] approaches 
achieve a large cancellation of the Mi(qi = 0) terms, but do not include the effect 
of the Mi(q~) factors. On the other hand, Cotton and Harris [7] arbitrarily restrain 
the charge dependence of the VSIE's and thus achieve higher ionic characters 
for the series of complexes they examined. 
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